Pages

Monday, May 30, 2011

Geological Methods in Mineral Exploration and Mining, Second Edition


Roger Marjoribanks, "Geological Methods in Mineral Exploration and Mining, Second Edition"
Springer | 2010 | ISBN: 3540743707 | 238 pages | PDF | 5,6 MB





This practical step-by-step guide describes the key geological field techniques needed by today's exploration geologists involved in the search for metallic mineral deposits. The techniques described are fundamental to the collection, storage and presentation of geological data and their use to locate ore. This book explains the various tasks which an exploration geologist is asked to perform in the sequence in which they might be employed in an actual exploration project. Hints and tips are given and the steps are illustrated with numerous examples drawn from real programmes on which the author has worked. Traditional skills are emphasised to show how they can be combined effectively with modern high-technology approaches. For instance this second edition also reviews new techniques geophysics along with GPS applications in exploration and the application of state-of-the-art software to mapping, 3D modelling and resource estimation. Another important facet is the discussion of harm minimisation, especially during the exploration stage, beginning with landowner and community consultation, through exploration planning, leading to sustainable and environmentally responsible mining practices.

Contents
1 Prospecting and the Exploration Process . . . . . . . . . . . . . . . 1
1.1 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Generating New Projects and Prospects . . . . . . . . . . . . . 1
1.3 Some Ways of Generating New Exploration Ideas . . . . . . . . 3
1.4 A Check-List of Negative Assumptions . . . . . . . . . . . . . 4
1.5 Stages in Prospect Exploration . . . . . . . . . . . . . . . . . . 5
1.5.1 Target Generation . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Target Drilling . . . . . . . . . . . . . . . . . . . . . . 6
1.5.3 Resource Evaluation Drilling . . . . . . . . . . . . . . 6
1.5.4 Feasibility Study . . . . . . . . . . . . . . . . . . . . 6
1.6 Maximizing Success in Exploration Programmes . . . . . . . . 7
1.7 Different Types of Exploration Strategy . . . . . . . . . . . . . 9
1.8 Exploration Feedbacks . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Breaking Occam’s Razor . . . . . . . . . . . . . . . . . . . . . 10
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Geological Mapping in Exploration . . . . . . . . . . . . . . . . . . 13
2.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 WhyMake aMap? . . . . . . . . . . . . . . . . . . . 13
2.1.2 TheNature of aGeologicalMap . . . . . . . . . . . . 14
2.1.3 Intelligent Mapping . . . . . . . . . . . . . . . . . . . 15
2.1.4 Choosing the Best Technique . . . . . . . . . . . . . . 18
2.1.5 Choosing the Best Scale . . . . . . . . . . . . . . . . . 20
2.1.6 Measuring and Recording Structures . . . . . . . . . . 22
2.1.7 Using Satellite Navigation (GPS) . . . . . . . . . . . . 23
2.2 Mapping Using Reflectance Imagery as a Map Base . . . . . . 25
2.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Acquiring Air Photographs . . . . . . . . . . . . . . . 26
2.2.3 Geological Interpretation . . . . . . . . . . . . . . . . 26
2.2.4 Determining Scale . . . . . . . . . . . . . . . . . . . . 27
2.2.5 Stereoscopic Image Pairs . . . . . . . . . . . . . . . . 29
2.2.6 Image Handling Techniques . . . . . . . . . . . . . . 31
2.2.7 Working with Enlarged Air Photographs . . . . . . . . 34
2.2.8 DataTransfer toBaseMap . . . . . . . . . . . . . . . 37
2.3 Mapping with a Plane Table . . . . . . . . . . . . . . . . . . . 38
2.4 Mapping on a Pegged Grid . . . . . . . . . . . . . . . . . . . . 41
2.4.1 Requirements of the Grid . . . . . . . . . . . . . . . . 41
2.4.2 Making theMap . . . . . . . . . . . . . . . . . . . . . 43
2.5 Mapping with Tape and Compass . . . . . . . . . . . . . . . . 47
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3 Mine Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Mapping in Open Cuts . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Mapping Underground Openings . . . . . . . . . . . . . . . . 56
3.4 Safety inMines . . . . . . . . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4 Trenching and Underground Development . . . . . . . . . . . . . . 63
4.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Pitting and Trenching . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Underground Development . . . . . . . . . . . . . . . . . . . . 64
4.4 Safety and Logistics in Trenching . . . . . . . . . . . . . . . . 65
4.5 Geological Mapping . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Geochemical Sampling . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Examples of Successful Exploration Programmes . . . . . . . . 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5 Drilling: A General Discussion the Importance of Drilling . . . . . 75
5.1 Types of Drilling . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Choosing the Right Technique . . . . . . . . . . . . . . . . . . 76
5.3 TargetingHoles . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Drilling on Section . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6 Rotary Percussion and Auger Drilling . . . . . . . . . . . . . . . . 85
6.1 Rotary Percussion Drilling . . . . . . . . . . . . . . . . . . . . 85
6.1.1 Reverse Circulation Drilling (RC) . . . . . . . . . . . 85
6.1.2 Air Core Drilling . . . . . . . . . . . . . . . . . . . . 93
6.1.3 Rotary Air Blast (RAB) Drilling . . . . . . . . . . . . 93
6.2 Auger Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . 96
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7 Diamond Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 SomeDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3 BeforeYouBegin . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Setting Up a Diamond Hole . . . . . . . . . . . . . . . . . . . 102
7.5 GeologicalObservation . . . . . . . . . . . . . . . . . . . . . 103
7.6 Recognizing and Interpreting Structures in Core . . . . . . . . . 104
7.6.1 Statement of theProblem . . . . . . . . . . . . . . . . 104
7.6.2 Planar Structures . . . . . . . . . . . . . . . . . . . . 104
7.6.3 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.6.4 Linear Structures . . . . . . . . . . . . . . . . . . . . 107
7.6.5 Folds . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.6.6 The Scale Problem . . . . . . . . . . . . . . . . . . . 110
7.6.7 Vergence . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.7 Measuring and Recording Structures in Core . . . . . . . . . . 113
7.8 Core Logging Systems . . . . . . . . . . . . . . . . . . . . . . 116
7.8.1 Prose Logging . . . . . . . . . . . . . . . . . . . . . . 116
7.8.2 Graphical Scale Logging . . . . . . . . . . . . . . . . 117
7.8.3 Analytical Spreadsheet Logging . . . . . . . . . . . . 119
7.9 Down-HoleSurveying . . . . . . . . . . . . . . . . . . . . . . 123
7.9.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 123
7.9.2 Using Down-Hole Survey Data to Plot Sections andPlans . . . . . . . . . . . . . . . . . . . . . . . . 124
7.10 When Should Core Be Oriented? . . . . . . . . . . . . . . . . . 127
7.11 Sampling andAssaying . . . . . . . . . . . . . . . . . . . . . . 127
7.12 CoreHandling . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.13 Core Photography . . . . . . . . . . . . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8 Satellite Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 How Earth Observation Satellites Work . . . . . . . . . . . . . 139
8.3 Display of Satellite Images . . . . . . . . . . . . . . . . . . . . 140
8.4 Geological Interpretation . . . . . . . . . . . . . . . . . . . . . 140
8.5 Analysis of Reflectance Data . . . . . . . . . . . . . . . . . . . 142
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9 Geophysical and Geochemical Methods . . . . . . . . . . . . . . . 143
9.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2 Magnetic Surveys . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.3 GravitySurveys . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.4 RadiometricSurveys . . . . . . . . . . . . . . . . . . . . . . . 150
9.5 Electromagnetic (EM) Surveys . . . . . . . . . . . . . . . . . . 150
9.6 ElectricalSurveys . . . . . . . . . . . . . . . . . . . . . . . . 151
9.7 Hybrid Electrical and Magnetic Surveys . . . . . . . . . . . . . 152
9.8 Advances in Instrumentation and Data Modelling . . . . . . . . 153
9.9 Stream Sediment Sampling . . . . . . . . . . . . . . . . . . . . 155
9.10 SoilSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.11 Heavy Mineral Concentrate (HMC) Sampling . . . . . . . . . . 158
9.12 RockChipSampling . . . . . . . . . . . . . . . . . . . . . . . 160
9.13 LateriteSampling . . . . . . . . . . . . . . . . . . . . . . . . . 161
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10 Geographical Information Systems and Exploration Databases . . 165
10.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.2 The Need for Digital Exploration Databases . . . . . . . . . . . 165
10.3 GISStorage ofMapData . . . . . . . . . . . . . . . . . . . . . 168
10.3.1 Digitised Line Format . . . . . . . . . . . . . . . . . . 168
10.3.2 Polygon or Vector Format . . . . . . . . . . . . . . . . 170
10.3.3 RasterFormat . . . . . . . . . . . . . . . . . . . . . . 170
10.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.5 Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.5.1 Geographical Coordinates . . . . . . . . . . . . . . . . 171
10.5.2 CartesianCoordinates . . . . . . . . . . . . . . . . . . 171
10.5.3 MapDatums . . . . . . . . . . . . . . . . . . . . . . . 172
10.5.4 MapRegistering . . . . . . . . . . . . . . . . . . . . . 173
10.6 Manipulation ofGISData . . . . . . . . . . . . . . . . . . . . 173
10.7 Presentation ofGISData . . . . . . . . . . . . . . . . . . . . . 174
Appendix A
Notes on the Use of Graphical Scale Logging . . . . . . . . . . . . . 179
A.1 Column 1(HoleDepth) . . . . . . . . . . . . . . . . . . . . . 180
A.2 Column 2(CoreRecovery) . . . . . . . . . . . . . . . . . . . . 180
A.3 Column 3 (Core Quality) . . . . . . . . . . . . . . . . . . . . . 180
A.4 Column 4 (SampleNo.) . . . . . . . . . . . . . . . . . . . . . 180
A.5 Column 5 (AssayResults) . . . . . . . . . . . . . . . . . . . . 180
A.6 Column 6 (Mapping Logs) . . . . . . . . . . . . . . . . . . . . 180
A.7 Column 7 (HistogramLogs) . . . . . . . . . . . . . . . . . . . 181
A.8 Column 8 (GeologyNotes) . . . . . . . . . . . . . . . . . . . . 182
A.9 Column 9 (SummaryLog) . . . . . . . . . . . . . . . . . . . . 182
A.10 RemarksArea . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Appendix B
Oriented Drill Core: Techniques and Procedures . . . . . . . . . . 183
B.1 Techniques for Orienting Drill Core . . . . . . . . . . . . . . . 183
B.1.1 Non-mechanical Means . . . . . . . . . . . . . . . . 183
B.1.2 Mechanical Means . . . . . . . . . . . . . . . . . . . 183
B.2 How to Handle Oriented Core . . . . . . . . . . . . . . . . . . 188
B.3 HowtoMeasureStructures inOrientedCore . . . . . . . . . . 190
B.3.1 BeforeYouMeasure . . . . . . . . . . . . . . . . . . 190
B.3.2 How Many Measurements Are Needed? . . . . . . . . 191
B.3.3 UsingaCoreFrame . . . . . . . . . . . . . . . . . . . 192
B.3.4 UsingInternalCoreAngles . . . . . . . . . . . . . . . 195
B.3.5 Discussion on the Best Measuring Technique . . . . . 201
B.3.6 Plotting Structure Measurements on Drill Section . . . 202
Appendix C
Calculating Strike and Dip from Multiple Diamond Drill Holes . . 205
C.1 TheThreePointProblem . . . . . . . . . . . . . . . . . . . . . 205
C.2 SolutionUsingStructureContours . . . . . . . . . . . . . . . . 205
C.3 Solution Using a Stereonet . . . . . . . . . . . . . . . . . . . . 206
C.4 An Elegant Solution to Determining the Attitude of
Planes in Non-oriented Core . . . . . . . . . . . . . . . . . . . 208
Appendix D
How to Use a Stereo Net to Convert Internal Core Angles to Geographic Coordinates . . . . . . . . . . . . . . . . . . . . . . 211
D.1 The Solution for Planar Structures . . . . . . . . . . . . . . . . 211
D.2 The Solution for Linear Structures . . . . . . . . . . . . . . . . 213
Appendix E
Practical Field Techniques . . . . . . . . . . . . . . . . . . . . . . . 215
E.1 Choosing the Right Compass . . . . . . . . . . . . . . . . . . . 215
E.2 Understanding Your Compass . . . . . . . . . . . . . . . . . . 215
E.3 Measuring the Strike and Dip of Planes . . . . . . . . . . . . . 217
E.4 Measuring the Trend and Plunge of Lineations . . . . . . . . . 218
Appendix F
Suggested Further Reading . . . . . . . . . . . . . . . . . . . . . . 223
Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . 229
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

William G. Pariseau “Design Analysis in Rock Mechanics"


William G. Pariseau “Design Analysis in Rock Mechanics"
Taylor & Francis | 2006-10-20 | ISBN: 041540357X | 560 pages | PDF | 6,4 MB
 Supplying numerous example problems illustrating design analysis techniques, this text approaches important design issues in rock mechanics from a mechanics of materials foundation. It addresses rock slope stability in surface excavations, shaft and tunnel stability, and entries and pillars. The book also covers three-dimensional caverns with an emphasis of backfill and cable bolting and addresses the geometry and forces of chimney caving. Appendices contain supplementary information about rock, joint, and composite properties, rock mass classification schemes, and useful formulas. A solutions manual is available for the many problems posed at the end of each chapter.

Content
Preface xi
Acknowledgments xv
1 Introduction  (1.06 Mb)
1.1 A practical design objective 3
1.2 Problem solving 4
1.3 Units 5
1.4 Background information 6
  • Rock mechanics literature 6
  • Mechanical properties of rock 7
1.5 Problems 7
  • Basics 7
  • Review of stress 8
  • Review of strain and elasticity 10
2 Slope stability  (0.5 Mb)
2.1 Translational rock slope failures 18
  • Planar block slides 18
  • Saftey factor improvement 31
  • Wedge failures 38
2.2 Rotational slope failures 60
  • Remedial measures 68
  • Base failures 70
  • Toppling failures 72
2.3 Problems 73
  • Planar block slides 73
  • Wedge failures 78
  • Rotational slides 81
  • Dynamics, toppling 85
3 Shafts  (1.9 Mb)
3.1 Single unlined naturally supported shafts 87
  • Shaft wall stress concentration 88
  • Unlined circular shafts 89
  • Unlined elliptical shafts 94
  • Unlined rectangular shafts 101
  • Shaft wall strengths 113
3.2 Shaft wall support and liners 121
  • Shaft wall bolting 122
  • Circular shaft liners 130
  • Circular steel rings 140
3.3 Multiple naturally supported shafts 142
  • Circular shafts in a row 142
  • Shaft pillar safety 148
  • Two circular shafts of different diameter 153
  • Elliptical shafts in a row 155
  • Rectangular shafts in a row 158
3.4 Problems 162
  • Single, naturally supported shafts 162
  • Supported shafts, liners, bolts, rings 169
  • Multiple shafts 173
4 Tunnels  (0.5 Mb)
4.1 Naturally supported tunnels 175
  • Single tunnels 177
  • Single tunnel joints 184
  • Multiple tunnels 189
4.2 Tunnel support 194
  • Fixed steel sets 194
  • Pattern bolting – rock reinforcement 208
  • Combination support 212
  • Yieldable steel arches 218
  • Light segment liner 219
4.3 Problems 220
  • Naturally supported tunnels 220
  • Supported tunnels 221
  • Rock mass classification schemes, RQD 226
5 Entries in stratified ground  (0.5 Mb)
5.1 Review of beam analysis 229
  • Basic beam formulas 230
  • Important special cases 234
5.2 Softrock entries 243
  • Naturally supported roof 243
  • Bolted roof 255
  • Point anchored roof bolting 255
  • Distributed anchorage roof bolting 261
  • Roof trusses 264
5.3 Problems 266
  • Naturally supported roof 266
  • Bolted roof 268
6 Pillars in stratified ground  (0.5 Mb)
6.1 Pillars in a single seam 277
  • Tributary area, extraction ratio analysis 277
  • Size effect on strength 281
6.2 Pillars in dipping strata 289
  • Extraction ratio formulas for pillars in dipping seams 289
  • An unconventional Mohr’s circle representation 293
  • Generalized Mohr’s circle 298
  • Backfill effects on pillar safety factors 300
6.3 Pillars with joints 306
  • Flat seam pillars with joints 306
  • Dipping seam pillars with joints 310
6.4 Pillars in several seams 315
  • Columnized main entry pillars 315
  • Staggered chain entry pillars 321
6.5 Barrier pillars 324
6.6 Problems 329

7 Three-dimensional excavations  (0.7 Mb)
7.1 Naturally supported caverns and stopes 346
  • Spheroidal excavations 347
  • Cubical and brick-shaped excavations 356
7.2 Joints in cavern and stope walls 363
7.3 Tabular excavations 364 7.4 Cavern and stope support 366
  • Hardrock mine fill 367
  • Cable bolt support 386
7.5 Problems 390
  • 3D Caverns 390
  • Back fill 391
  • Cable bolting 393
8 Subsidence  (1.7 Mb)
8.1 Chimneys 397
  • Chimney cave geometry 398
  • Caving rock flow 405
  • Chimney cave forces 407
  • Chimney cave water forces 417
  • Support near caving ground 421
8.2 Troughs 430
  • Limit of subsidence 431
  • Maximum subsidence 433
  • Critical width 433
  • NCB subsidence profile 435
  • Angle of draw and subsidence factor adjustments 440
  • NCB strain profile 444
  • Surface damage 451
  • Multipanel, multiseam subsidence 455
  • Alternative approaches to subsidence 461
8.3 Problems 461
  • Chimney caving 461
  • Combination support 464
  • Subsidence troughs 467
Appendix A: Background literature 469
A.1 Books about fundamentals of mechanics 469
A.2 Books about rock mechanics 470
A.3 Books containing rock properties 471
A.4 General sources of rock mechanics information 472
Appendix B: Mechanical properties of intact rock and joints 473
B.1 Elastic moduli of intact rock 474
  • Young’s modulus 474
  • Poisson’s ratio 477
  • Shear modulus 479
  • Anisotropy 480

B.2 Strength of intact rock 482
  • Tensile strength 482
  • Unconfined compressive strength 485
  • Compressive strength under confining pressure 495
  • Mohr–Coulomb strength 497
  • Hoek–Brown strength 499
  • Drucker–Prager strength 499
  • Nonlinear n-type strength 501
  • Compressive strength test data 501
B.3 Joint stiffness 507
  • Normal stiffness 508
  • Shear stiffness 509
B.4 Joint strength 509
B.5 Simple combinations of intact rock and joints 512
  • Continuously jointed rock mass moduli 514
  • Discontinuously jointed rock mass moduli 518
  • Continuously jointed rock mass strengths 520
  • Discontinuously jointed rock mass strengths 523
Appendix C: Rock mass classification schemes for engineering 529
C.1 Rock quality designation 529
C.2 Terzaghi modified scheme 529
C.3 RSR, RMR, and Q 530
C.4 Comparisons of Hp estimates 531
Appendix D: Some useful formulas 533
D.1 Stress 533
  • Normal and shear stress on a plane 535
  • Principal (normal) stresses 536
  • Principal shear stresses 537
  • Mohr’s circle 538
D.2 Strain 539
  • Strain rosettes 539
  • Small strain–displacement relations 541
D.3 Stress–strain relationships, Hooke’s law 541
  • Hooke’s law in one dimension – Young’s modulus and shear modulus 541
  • Hooke’s law in two-dimensions – plane stress and plane strain 549
References 551
Index 557

Sunday, May 29, 2011

Well Logging for Earth Scientists


Well Logging for Earth Scientists
692 pages | Springer; 2nd edition (May 1, 2008) | ISBN-10: 1402037384 | PDF | 21 Mb
 Well logging lies at the intersection of applied geophysics, petroleum and geotechnical engineering. It has its roots in the tentative electrical measurements in well bores which were made by the Schlumberger brothers some 80 years ago in the earliest days of systematic petroleum exploration. Today, a variety of specialized instruments is used to obtain measurements from the borehole during, as well as after, the drilling process. This readable and authoritative treatment of the physics of these measurements dispels the "black magic" of well log interpretation by relating them, including those obtained by the latest generation of tools, to rock physics. It offers a thorough exposé of the physical basis of borehole geophysical measurements, as well as an introduction to practical petrophysics -- extracting desired properties from well log measurements.

content
1.1 Introduction
1.2 What is Logging?
1.2.1 What is Wireline Logging?
1.2.2 What is LWD?
1.3 Properties of Reservoir Rocks
1.4 Well Logging: The Narrow View
1.5 Measurement Techniques
1.6 How is Logging Viewed by Others?

2.1 Introduction
2.2 Rudimentary Interpretation Principles
2.3 The Borehole Environment
2.4 Reading a Log
2.5 Examples of Curve Behavior and Log Display
2.6 A Sample Rapid Interpretation

3.1 Introduction
3.2 The Concept of Bulk Resistivity
3.3 Electrical Properties of Rocks and Brines
3.4 Spontaneous Potential
3.5 Log Example of the SP

4.1 Introduction
4.2 Early Electric Log Interpretation
4.3 Empirical Approaches to Interpretation
4.3.1 Formation Factor
4.3.2 Archie’s Synthesis
4.4 A Note of Caution
4.4.1 The Porosity Exponent, m
4.4.2 The Saturation Exponent, n
4.4.3 Effect of Clay
4.4.4 Alternative Models
4.5 A Review of Electrostatics
4.6 A Thought Experiment for a Logging Application
4.7 Anisotropy

5.1 Introduction
5.2 Unfocused Devices
5.2.1 The Short Normal
5.2.2 Estimating the Borehole Size Effect
5.3 Focused Devices
5.3.1 Laterolog Principle
5.3.2 Spherical Focusing
5.3.3 The Dual Laterolog
5.3.4 Dual Laterolog Example
5.4 Further Developments
5.4.1 Reference Electrodes
5.4.2 Thin Beds and Invasion
5.4.3 Array Tools

6.1 Introduction
6.2 Microelectrode Devices
6.3 Uses for Rxo  
6.4 Azimuthal Measurements
6.5 Resistivity Measurements While Drilling
6.5.1 Resistivity at the Bit
6.5.2 Ring and Button Measurements
6.5.3 RAB Response
6.5.4 Azimuthal Measurements
6.6 Cased-Hole Resistivity Measurements

7.1 Introduction
7.2 Review of Magnetostatics and Induction
7.2.1 Magnetic Field from a Current Loop
7.2.2 Vertical Magnetic Field from a Small Current Loop
7.2.3 Voltage Induced in a Coil by a Magnetic Field
7.3 The Two-Coil Induction Device
7.4 Geometric Factor for the Two-coil Sonde
7.5 Focusing the Two-coil Sonde
7.6 Skin Effect
7.7 Two-Coil Sonde with Skin Effect
7.8 Multicoil Induction Devices
7.9 Induction or Electrode?
7.10 Induction Log Example

8.1 Introduction
8.2 Phasor Induction
8.2.1 Inverse Filtering
8.3 High Resolution Induction
8.4 Multi-Array Inductions
8.4.1 Multi-Array Devices
8.4.2 Multi-Array Processing
8.4.3 Limitations of Resolution Enhancement
8.4.4 Radial and 2D Inversion
8.4.5 Dipping Beds
8.5 Multicomponent Induction Tools and Anisotropy
8.5.1 Response of Coplanar Coils
8.5.2 Multicomponent Devices

9.1 Introduction
9.2 Characterizing Dielectrics
9.2.1 Microscopic Properties
9.2.2 Interfacial Polarization and the Dielectric Properties of Rocks
9.3 Propagation in Conductive Dielectric Materials
9.4 Dielectric Mixing Laws
9.5 The Measurement of Formation Dielectric Properties
9.6 2 MHz Measurements
9.6.1 Derivation of the Field Logs
9.6.2 General Environmental Factors
9.6.3 Vertical and Radial Response
9.6.4 Dip and Anisotropy
9.6.5 Array Propagation Measurements and their Interpretation

10.1 Introduction
10.2 Nuclear Radiation
10.3 Radioactive Decay and Statistics
10.4 Radiation Interactions
10.5 Fundamentals of Gamma Ray Interactions
10.6 Attenuation of Gamma Rays
10.7 Gamma Ray Detectors
10.7.1 Gas-Discharge Counters
10.7.2 Scintillation Detectors
10.7.3 Semiconductor Detectors

11.1 Introduction
11.2 Sources of Natural Radioactivity
11.3 Gamma Ray Devices
11.4 Uses of the Gamma Ray Measurement
11.5 Spectral Gamma Ray Logging
11.5.1 Spectral Stripping
11.6 Developments in Spectral Gamma Ray Logging
11.7 A Note on Depth of Investigation

12.1 Introduction
12.2 Density and Gamma Ray Attenuation
12.2.1 Density Measurement Technique
12.2.2 Density Compensation
12.3 Lithology Logging
12.3.1 Photoelectric Absorption and Lithology
12.3.2 Pe Measurement Technique
12.3.3 Interpretation of Pe
12.4 Inversion of Forward Models with Multidetector Tools
12.5 LWD Density Devices
12.6 Environmental Effects
12.7 Estimating Porosity from Density Measurements
12.7.1 Interpretation Parameters


13.1 Introduction
13.2 Fundamental Neutron Interactions
13.3 Nuclear Reactions and Neutron Sources
13.4 Useful Bulk Parameters
13.4.1 Macroscopic Cross Sections
13.4.2 Lethargy and Average Energy Loss
13.4.3 Number of Collisions to Slow Down
13.4.4 Characteristic Lengths
13.4.5 Characteristic Times
13.5 Neutron Detectors


14.1 Introduction
14.2 Use of Neutron Porosity Devices
14.3 Types of Neutron Tools
14.4 Basis of Measurement
14.5 Historical Measurement Technique
14.6 A Generic Thermal Neutron Tool
14.7 Typical Log Presentation
14.8 Environmental Effects
14.8.1 Introduction to Correction Charts
14.9 Major Perturbations of Neutron Porosity
14.9.1 Lithology Effect
14.9.2 Shale Effect
14.9.3 Gas Effect
14.10 Depth of Investigation
14.11 LWD Neutron Porosity Devices
14.12 Summary


15.1 Introduction
15.2 Thermal Neutron Die-Away Logging
15.2.1 Thermal Neutron Capture
15.2.2 Measurement Technique
15.2.3 Instrumentation
15.2.4 Interpretation
15.3 Pulsed Neutron Spectroscopy
15.3.1 Evolution of Measurement Technique
15.4 Pulsed Neutron Porosity
15.5 Spectroscopy


16.1 Introduction
16.1.1 Nuclear Resonance Magnetometers
16.1.2 Why Nuclear Magnetic Logging?
16.2 A Look at Magnetic Gyroscopes
16.2.1 The Precession of Atomic Magnets
16.2.2 Paramagnetism of Bulk Materials
16.3 Some Details of Nuclear Induction
16.3.1 Longitudinal Relaxation, T1
16.3.2 Rotating Frame
16.3.3 Pulsing
16.3.4 Transverse Relaxation, T2, and Spin Dephasing
16.3.5 Spin Echoes
16.3.6 Relaxation and Diffusion in Magnetic Gradients
16.3.7 Measurement Sensitivity
16.4 NMR Properties of Bulk Fluids
16.4.1 Hydrogen Index
16.4.2 Bulk Relaxation in Water and Hydrocarbons
16.4.3 Viscosity Correlations for Crude Oils
16.5 NMR Relaxation in Porous Media
16.5.1 Surface Interactions
16.5.2 Pore Size Distribution
16.5.3 Diffusion Restriction
16.5.4 Internal Magnetic Gradients
16.6 Operation of a First Generation Nuclear Magnetic Logging Tool
16.7 The NMR Renaissance of “Inside-Out” Devices
16.7.1 A New Approach
16.7.2 Numar/Halliburton MRIL
16.7.3 Schlumberger CMR and Subsequent Developments
16.7.4 LWD Devices
16.8 Applications and Log Examples
16.8.1 Tool Planners
16.8.2 Porosity and Free-Fluid Porosity
16.8.3 Pore Size Distribution and Permeability Estimation
16.8.4 Fluid Typing
16.9 Summary
16.10 Appendix A: Diffusion


17.1 Introduction to Acoustic Logging
17.2 Short History of Acoustic Measurements in Boreholes
17.3 Applications of Borehole Acoustic Logging
17.4 Review of Elastic Properties
17.5 Wave Propagation
17.6 Rudimentary Acoustic Logging
17.7 Rudimentary Acoustic Interpretation


18.1 Introduction
18.2 A Review of Laboratory Measurements
18.3 Porolelastic Models of Rocks
18.4 The Promise of Vp/Vs
18.4.1 Lithology
18.4.2 Gas Detection and Quantification
18.4.3 Mechanical Properties
18.4.4 Seismic Applications (AVO)
18.5 Acoustic Waves in Boreholes
18.5.1 Borehole Flexural Waves
18.5.2 Stoneley Waves


19.1 Introduction
19.2 Transducers – Transmitters and Receivers
19.3 Traditional Sonic Logging
19.3.1 Some Typical Problems
19.3.2 Long Spacing Sonic
19.4 Evolution of Acoustic Devices
19.4.1 Arrays of Detectors
19.4.2 Dipole Tools
19.4.3 Shear Wave Anisotropy and Crossed Dipole Tools
19.4.4 LWD
19.4.5 Modeling-driven Tool Design
19.5 Acoustic Logging Applications
19.5.1 Formation Fluid Pressure
19.5.2 Mechanical Properties and Fractures
19.5.3 Permeability
19.5.4 Cement Bond Log
19.6 Ultrasonic Devices
19.6.1 Pulse-Echo Imaging
19.6.2 Cement Evaluation


20.1 Introduction
20.2 Why are HA/HZ Wells Different?
20.3 Measurement Response
20.3.1 Resistivity
20.3.2 Density
20.3.3 Neutron
20.3.4 Other Measurements
20.4 Geosteering
20.4.1 Deep Reading Devices for Geosteering


21.1 Introduction
21.2 What is Clay/Shale?
21.2.1 Physical Properties of Clays
21.2.2 Total Porosity and Effective Porosity
21.2.3 Shale Distribution
21.2.4 Influence on Logging Measurements
21.3 Shale Determination from Single Measurements
21.3.1 Interpretation of Pe in Shaly Sands
21.3.2 Neutron Response to Shale
21.3.3 Response of _ to Clay Minerals
21.4 Neutron–Density Plots
21.5 Elemental Analysis
21.6 Clay Typing


22.1 Introduction
22.2 Graphical Approach for Binary Mixtures
22.3 Combining Three Porosity Logs
22.3.1 Lithology Logging: Incorporating Pe
22.3.2 Other Methods
22.4 Numerical Approaches to Lithology Determination
22.4.1 Quantitative Evaluation
22.5 General Evaluation Methods


23.1 Introduction
23.2 Clean Formations
23.3 Shaly Formations
23.3.1 Early Models
23.3.2 Double Layer Models
23.3.3 Saturation Equations
23.3.4 Laminated Sands
23.4 Carbonates and Heterogeneous Rocks
23.5 Permeability from Logs
23.5.1 Resistivity and Porosity
23.5.2 Petrophysical Models

Download Here : Part 1, Part 2, Part 3, Part 4, Part 5, and Part 6